

ChemAxon UGM 2019

Dan Dragos Stefanescu Scientific Computing

Business Needs

- Efficient exploration of chemical space around biologically active chemical matter
 - Integration of diverse information linked to compounds
 - Activity, related drugs, commercially available compounds...
 - Efficient navigation (traversing) and visualization
 - Exploitation of neighborhood relationships
- Highly interactive and visual data traversing of the chemical space
 - Excellent performance to retrieve data from large data sets
 - High-end visualization capabilities to depict complex relationships
 - Benefits include new insights that might have otherwise been overlooked and increased creativity

Business Needs

- Researchers need highly interactive (responsive) and user-friendly tools to answer questions like:
 - What are the nearest neighbors to a given compound A that contain scaffold A and show a high permeability?
 - Which compounds show activities on targets A and B and have a reasonable ADME profile?
 - Is there a commercially available compound similar to compound A that comes with pharmacological data that might be used as a tool compound?

Previous Situation Had Technology Gaps

- Data was only stored in relational databases
- A single Nearest Neighbor Search may have taken minutes
- A compound collection walk-through required a series of successive searches that may have taken hours

Steps in Building the Similarity Graph Tool

Calculation of FCFP4 fingerprint (Tanimoto) similarities

 With 10 Nearest Neighbors, Canonical SMILES, INCHI keys, and structure pictures for all Sanofi screening collection compounds

Using the new ChemAxon4Neo4j plugin for substructure and similarity searches

Avoid redundant storage of structures in Oracle (cartridge)

Compound annotations

- Physical Chemistry data (logD HPLC Mean, SOLUBILITY Mean) and also calculated properties
- eADME data (PT Max Mean, METABOLISM Human Mean, METABOLISM Rat Mean)
- Related Sanofi project names

Steps in Building the Similarity Graph Tool

- Loading the data into the Neo4j graph database
- Using Tom Sawyer Perspectives by Tom Sawyer Software to build the web application
 - Selected due to its advanced data integration and graph visualization capabilities
- Integration of ChemAxon MARVIN JS sketcher for drawing structures for substructure search

Features of the Similarity Graph Tool

- Retrieve Nearest Neighbors of a molecule
- Highlight highest, second highest...chemical similarity edge of a molecule node for interactive graph traversal
- Allow scientist to track the path and order of visited compounds
- Export selected compound IDs for further analysis in other tools
 - For example, Certara D360
- Allow filtering on edge and node properties
- Apply color coding (rules) to molecule nodes

Features of the Similarity Graph Tool

- Find shortest path(s) between two molecules respecting the biological context
 - Consider visible nodes of the currently displayed graph or all database nodes
- Enrich nodes with data from CSV files
 - For example, link by compound ID
- Display scaffolds
- Show compounds with similar SAR
 - Same biological function, but low chemical similarity
- Integration of CHEMBL data
 - 1.8 million compounds

Acknowledgements

ChemAxon

- Annamaria Kovacs
- Andras Volford
- Balazs Zaicsek
- Tamas Varga
- Janos Fejervari

Tom Sawyer Software

- Brendan Madden
- Rudolfs Opmanis
- Margers Kietis
- Deborah Baron
- Madisen Joseph

Neo4j

- Sven Janko
- Bruno Ungermann

Sanofi

- Christian Buning
- Christine Rudolph
- Sven Ruf
- Hans Matter
- Peter Monecke
- Jürgen Kammerer
- Norbert Krass
- Gerhard Hessler

